

DÖHLER

LMC

Brewers QCheck™ Kit Manual

NBB -B

DOHLER

WE BRING IDEAS TO LIFE. NATURAL INGREDIENTS INGREDIENT SYSTEMS INTEGRATED SOLUTIONS

Table of contents

	Page
1. Simple and reliable microbiological quality control	3
2. Contents: Brewers QCheck™ Kit	4
3. Storage	5
4. Intended purpose	5
5. Safety requirements	5
6. Quality control	6
7. Benefits	6
8. Materials needed for analysis – not included in kit	6
9. Important guidelines	8
10. Protocols	8
10.1. LMC: Water analysis	8
10.1.1. LMC sampling	8
10.1.2. LMC incubation	9
10.1.3. LMC results analysis	9
10.2. NBB [®] -B: Yeast and beer analysis	10
10.2.1. NBB [®] -B sampling	10
10.2.2. NBB [®] -B sample combination with culture medium	11
10.2.3. NBB [®] -B incubation	11
10.2.4. NBB [®] -B results analysis for yeast and beer	12
10.2.5. NBB [®] -B results analysis for the yeast and beer swabs	12
10.3. NBB [®] -B-Am: Production and dispensing unit hygiene (biofilm indicators)	13
10.3.1. NBB [®] -B-Am sampling for dispensing unit hygiene	13
10.3.2. Transferring the swab sample to the NBB®-B-Am tube	13
10.3.3. NBB [®] -B-Am sampling for production hygiene	13
10.3.4. Transferring the swab sample to the NBB®-B-Am tube	14
10.3.5. NBB [®] -B-Am incubation	14
10.3.6. NBB [®] -B-Am results analysis	15
11. Frequently Asked Questions (FAQs) on application and evaluating the results	16
11.1. LMC: Water analysis	16
11.2. NBB [®] -B: Yeast and beer samples	17
11.3. NBB [®] -B-Am: Production and dispensing unit hygiene	18
12. Appendix:	19
12.1. Brief overview: Brewers QCheck™ Kit – analyses	19
12.2. Glossary	20
13. Supply sources	21
14. Information	22

1. Simple and reliable microbiological quality control

One of the main tasks in breweries is conducting microbiological beer fermentation in a clean and hygienic way. However, beer spoiling microorganisms can inhibit fermentation or have a negative impact on the beer's flavours. Therefore, microbiological control of the beer brewing processes is extremely important and critical.

The Brewers QCheck[™] Kit makes it possible to perform microbiological control on all samples of the brewing process in a simple, fast and comprehensive way. Different raw materials used for the brewing process, such as water and yeast, can be analysed for microbiological contamination before fermentation. Beer spoiling bacteria can be detected in the end product, i.e. the beer, and the hygiene of the surrounding area, for example within the production site and dispensing unit, can be accurately monitored.

All microbiological detection is easily and reliably visible through a colour change, even without any previous knowledge. Consequently, the Brewers QCheck[™] Kit allows the entire beer brewing process to be microbiologically controlled, thus providing the perfect introduction to microbiological quality control.

10.2. NBB[®]-B: Yeast and beer analysis

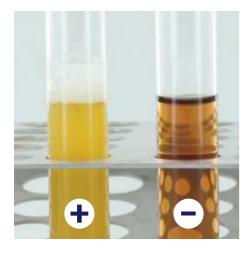
For yeast and cloudy beer, it is possible to use the swabs provided and a sterile serological pipette (not available with the kit) for sampling. For clear beer samples, please use the serological pipette.

10.2.1.	NBB®-B	sampling
---------	--------	----------

Yeast:	Beer:
Remove 0.5 - 1ml of yeast from the yeast culture using a sterile serological pipette.	Remove a beer sample (approx. 50 ml, see Useful tip: beer samples) under sterile conditions and transfer this to a sterile
Alternative: It is possible to extract thick, viscous	sample flask.
yeast using the sterile swab provided.	A) Sampling with a pipette Remove 0.5 - 1 ml of (green) beer in the sterile sample flask with the beer sample (50 ml) or alternatively from a bottle of beer, using a sterile serological pipette.
	B) Sampling with a swab:

Useful tip: beer samples

The majority of samples are taken from a tank using a sampling tap, or are alternatively taken from a barrel using a fitting. When carrying out this procedure, it is important that the sampling tap is decontaminated by using alcohol solution or a Bunsen burner. Valves/ fittings can be immersed in a suitable disinfectant beforehand. As it is not uncommon for severe contaminations to be found in the areas of the sampling tap, it is important to leave the beer running for a short while (approx. 1 second). Then take a sample. Leave the beer sample (50 ml) or beer bottle for 24 hours at 4°C to enable the formation of sediment at the bottom. Decant the liquid. Remove a sample from the sediment using a sterile swab.


10.2.2. NBB[®]-B sample combination with culture medium

Yeast:	Beer:
Transfer the yeast sample into an NBB®-B Tube.	A) Sampling with a pipette Fill an NBB [®] -B Tube with 0.5 - 1 ml of the beer
Pass the tube through the flame and seal it.	sample.
Alternative: Insert the swab into the NBB®-B Tube.	Flame the NBB®-B Tube and seal it.
Break off the upper part of the wooden shaft, flame the tube and seal it.	B) Sampling with a swab: Insert the sterile swab with the yeast sediment into an NBB [®] -B Tube. Break off the upper part of the wooden shaft and seal the tube.

10.2.3. NBB[®]-B incubation

Yeast:	Beer:
NBB [®] -B Tube at 28 ± 2°C	Incubate the sealed NBB®-B Tube at 28 ± 2°C for 5 days.

10.2.4. NBB[®]-B results analysis for yeast and beer

Once incubation is complete, the NBB®-B Tube colour will change from red to yellow if beverage spoiling microorganisms have been positively detected. The solution will also appear cloudy and gas formation may be observed in some cases.

Result: The yeast is contaminated with beer spoiling microorganisms and should not be used in the brewing process.

The beer is contaminated with beer spoiling microorganisms and should not be bottled or delivered.

If possible, repeat the experiments to confirm the results. If the beer is contaminated, it is necessary to carry out further analyses in order to determine its potential risk.

10.2.5. NBB[®]-B results analysis for the yeast / beer swabs

Once incubation is complete, the NBB[®]-B Tube colour will change from red to yellow if beverage spoiling microorganisms have been positively detected. The solution will also appear cloudy and gas formation may be observed in some cases.

Result: The yeast is contaminated with beer spoiling microorganisms and should not be used in the brewing process.

The beer is contaminated with beer spoiling microorganisms and should not be bottled or delivered.

If possible, repeat the experiments once again to confirm the result. If the beer is contaminated, it is necessary to carry out further analyses in order to determine its potential risk.